Wigner crystal physics in quantum wires.
نویسندگان
چکیده
The physics of interacting quantum wires has attracted a lot of attention recently. When the density of electrons in the wire is very low, the strong repulsion between electrons leads to the formation of a Wigner crystal. We review the rich spin and orbital properties of the Wigner crystal, in both the one-dimensional and the quasi-one-dimensional regimes. In the one-dimensional Wigner crystal the electron spins form an antiferromagnetic Heisenberg chain with exponentially small exchange coupling. In the presence of leads, the resulting inhomogeneity of the electron density causes a violation of spin-charge separation. As a consequence the spin degrees of freedom affect the conductance of the wire. Upon increasing the electron density, the Wigner crystal starts deviating from the strictly one-dimensional geometry, forming a zigzag structure instead. Spin interactions in this regime are dominated by ring exchanges, and the phase diagram of the resulting zigzag spin chain has a number of unpolarized phases as well as regions of complete and partial spin polarization. Finally we address the orbital properties in the vicinity of the transition from a one-dimensional to a quasi-one-dimensional state. Due to the locking between chains in the zigzag Wigner crystal, only one gapless mode exists. Manifestations of Wigner crystal physics at weak interactions are explored by studying the fate of the additional gapped low-energy mode as a function of interaction strength.
منابع مشابه
Wigner Modelling of Quantum Wires
Aggressively scaled More Moore devices such as FDSOI FETs, FinFETs, and nanowire transistors are designed around the concept of spatial confinement, which challenges basic notions of electron transport, originally derived under the assumption of a bulk crystal. Confined electrons do not have a well-defined three-dimensional momentum and a continuous energy spectrum. Physical models with confine...
متن کاملOne-dimensional Quantum Wires
In this paper we investigate the properties of a one-dimensional quantum wire of interacting electrons in the Wigner crystal limit. Recent theoretical work has explored some of the classical and quantum phase transitions associated with this system. For example, there exists a critical density above which the system can lower its energy by forming a quasi-one-dimensional zig-zag chain. We also ...
متن کاملZigzag phase transition in quantum wires.
We study the quantum phase transition of interacting electrons in quantum wires from a one-dimensional (1D) linear configuration to a quasi-1D zigzag arrangement using quantum Monte Carlo methods. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal, then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag ...
متن کاملThe One-Dimensional Wigner Crystal in Carbon Nanotubes
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL)1 which has now been observed in a number of experimental systems2–6. Interactions are even more important at low carrier density, and in the limit when the long-ranged Coulomb potential...
متن کاملThree-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement
Exact-diagonalization calculations for N = 3 electrons in anisotropic quantum dots, covering a broad range of confinement anisotropies and strength of inter-electron repulsion, are presented for zero and low magnetic fields. The excitation spectra are analyzed as a function of the strength of the magnetic field and for increasing quantum-dot anisotropy. Analysis of the intrinsic structure of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2009